Replicative Senescence in Human Fibroblasts Is Delayed by Hydrogen Sulfide in a NAMPT/SIRT1 Dependent Manner

نویسندگان

  • Reiko Sanokawa-Akakura
  • Shin Akakura
  • Siamak Tabibzadeh
چکیده

Recent evidence suggests that hydrogen sulfide (H2S) has cytoprotective and anti-aging effects. However, the mechanisms for such properties are not fully understood. Here, we show that the expression of the main H2S producing enzyme, CBS, and production of H2S are coordinately diminished in replicative senescent adult human dermal fibroblasts. The reduced production of H2S falls within the same time-frame that the hallmarks of replicative senescence appear including accumulation of SA-β-Gal, enhanced expression of p16, p21, and RRM2B while the expression of RRM2, hTERT, SIRT1, NAMPT, and NAD/NADH ratio all fall. Exogenous H2S increases the expression of hTERT, NAMPT, SIRT1 and NAD/NADH ratio in treated cells. Moreover, H2S safeguards the expression of hTERT in a NAMPT and SIRT1 dependent manner and delays the onset of replicative senescence as evidenced by reduced accumulation of age associated SA-β-Gal and cessation of proliferation. Postponement of loss of cell proliferative capacity without risk of mutagenesis shows implications for use of H2S in delaying the adverse effects of senescence in organisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Serum from calorie-restricted animals delays senescence and extends the lifespan of normal human fibroblasts in vitro

The cumulative effects of cellular senescence and cell loss over time in various tissues and organs are considered major contributing factors to the ageing process. In various organisms, caloric restriction (CR) slows ageing and increases lifespan, at least in part, by activating nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases of the sirtuin family. Here, we use an in vi...

متن کامل

FOXQ1 regulates senescence-associated inflammation via activation of SIRT1 expression

Cellular senescence is an initial barrier to tumor development that prevents the proliferation of premalignant cells. However, some of the features of senescent cells seem to promote tumor progression via senescence-associated secretory phenotype (SASP). Here, we demonstrated that the protein level of forkhead box Q1 (FOXQ1), which highly overexpresses in several kinds of tumors, was significan...

متن کامل

FOXO3a Potentiates hTERT Gene Expression by Activating c-MYC and Extends the Replicative Life-Span of Human Fibroblast

In our previous studies, we reported that SIRT1 prevents cellular senescence in human fibroblast, and that SIRT1-induced inhibition of cellular senescence is due to enhanced hTERT gene expression. In this study, we investigate the molecular mechanisms behind SIRT1-induced potentiation of hTERT transcription and show that FOXO3a functions downstream of SIRT1 and prevents the induction of cellula...

متن کامل

Polyploidy impairs human aortic endothelial cell function and is prevented by nicotinamide phosphoribosyltransferase.

Polyploid endothelial cells are found in aged and atherosclerotic arteries. However, whether increased chromosome content has an impact on endothelial cell function is unknown. We show here that human aortic endothelial cells become tetraploid as they approach replicative senescence. Furthermore, accumulation of tetraploid endothelial cells was accelerated during growth in high glucose. Interes...

متن کامل

The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop.

Silent information regulator 1 (SIRT1) represents an NAD(+)-dependent deacetylase that inhibits proapoptotic factors including p53. Here we determined whether SIRT1 is downstream of the prototypic c-MYC oncogene, which is activated in the majority of tumors. Elevated expression of c-MYC in human colorectal cancer correlated with increased SIRT1 protein levels. Activation of a conditional c-MYC ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016